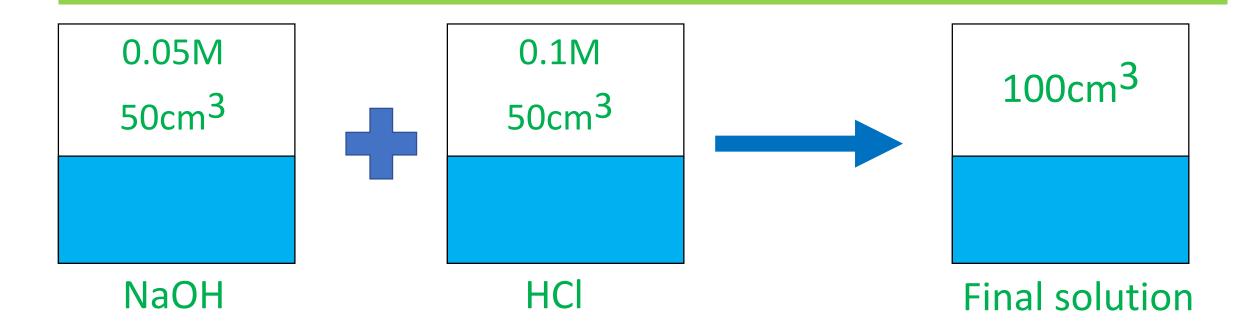
Strong acid Strong base Reaction Example

Note: $M = mol dm^{-3}$

Question: 0.1M HCl 50 cm³ solution and 0.05M NaOH 50 cm³ solution is mixed.

- a) is final solution acidic or basic?
- b) pH?

HCl is a strong acid. NaOH is a strong base.


Hence they react until one reactant finishes.

NaOH
$$_{(aq)}$$
 + HCl $_{(aq)}$ \rightarrow NaCl $_{(aq)}$ + H O $_{(aq)}$

Assumption: No volume change when mixing two solutions. That means final volume is 100ml.

Solving steps:

- Calculate amount of moles(n) of each solution.
- Write the reaction and balance it.
- Find the ratio that reactants react.
- Find the reactant which remains in the solution. (HCl or NaOH)
- Calculate the concentration of remaining reactant.
- Calculate pH.

Find amount of mole

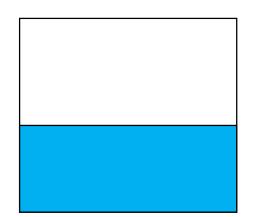
For solutions,

$$n = c * v$$

for HCl, amount of HCl = $0.1 \text{ mol dm}^{-3} * 50/1000 \text{ dm}^3 = 0.005 \text{ mol}$

for NaOH, amount of NaOH = $0.05 \text{ mol dm}^{-3} * 50/1000 \text{ dm}^{3} = 0.0025 \text{ mol}$

When we balance the equation, we can see reaction ratio of NaOH & HCl is 1:1. It means same amount of both substance react together.


Finally one substance remains. It will decide solution is acidic or basic. Below table show amount of reactants and products.

	NaOH _(aq) +	HCl (aq) →	NaCl (aq) +	H ₂ O _(I)
Initial amount	0.0025	0.005	_	_
Reacting / producing amount	-0.0025	-0.0025	0.0025	_
Final amount	0	0.0025	0.0025	_

We can see HCl remains in the solution. Hence final solution will be acidic.

NaCl is a salt. Therefore it does not effect to the solution's acidic or basic property.

Final solution Final solution contains NaCl, Water and remaining HCl.

HCl concentration = $0.0025 \text{ mol/} (100 * 10^{-3}) \text{ dm}^3$

 $= 0.025 \text{mol dm}^{-3}$

Total volume 100cm³

 H_3O^+ are received by mainly HCl and bit from water to the solution. But K_a of water is very small. Hence H_3O^+ from water is negligible.

HCl completely dissociate in the water

$$HCl_{(aq)} + H_{2}O_{(l)} \rightarrow H_{3}O^{+}_{(aq)} + Cl^{-}_{(aq)}$$

Therefore

$$[H_3O^+] = [HCI_{aq}] = 0.025 \text{mol dm}^{-3}$$

$$pH = -log[H_{3}O^{+}]$$

$$pH = -log(0.025)$$

$$pH = 1.602$$